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Abstract 

The results of experiments in which an anomalous form 
of the Pendellb'sung fringes has been discovered 
together with a classical one are presented. The general 
theory of X-ray spherical-wave diffraction has been 
constructed taking into account the change of phase 
relationships for radiation propagating in vacuum. An 
explanation of the observed experimental results and 
classification of possible manifestations of the 
Pendell6sung effect are given. New data concerning the 
previously discovered phenomenon of focusing are 
presented. 

1. Introduction 

The phase change of incident and diffracted waves 
propagating in vacuum, i.e. from the source to the 
crystal and from the crystal to the film, are usually 
neglected in the analysis of X-ray diffraction images of 
the crystal. In other words, diffraction phenomena in 
vacuum are disregarded. Such an approximation 
proves quite justified since in standard experiments the 
distance from the source to the film is small and the role 
of the above-mentioned changes in the phase relation- 
ships is negligible. 

However, it has been shown recently by Afanas'ev & 
Kohn (1977) that diffraction phenomena in vacuum 
play, in general, an important role in forming the 
diffraction pattern on a photoplate. In particular, a 
focusing occurs for a certain relation between the 
crystal thickness t and the source-film distance L. The 
phenomenon of focusing was first discovered experi- 
mentally by Aristov, Polovinkina, Shmyt'ko & 
Shulakov (1978) and independently somewhat later by 
Kozmik & Mikhailyuk (1978). A further experimental 
investigation (Aristov & Polovinkina, 1978) of this 
phenomenon under the conditions of slight X-ray 
absorption in a crystal led to the observation of the 
Pendell6sung fringes with a structure greatly different 
from that observed previously. 
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The present paper is devoted to a more detailed 
investigation of this problem, namely an analysis of the 
diffraction-pattern dependence on the value of t/L. In 
§ 2 the experimental topograms of wedge-shaped 
germanium and silicon crystals, obtained in the 
experiment with the total source-film distance of about 
2 m, are presented. In the thinner part of the wedge the 
Pendell6sung fringes, resembling hyperbolae, are bent 
towards the thick part of the crystal. The interference 
pattern of this type will be later referred to as the 
anomalous Pendell6sung effect. 

The general theory of X-ray spherical-wave 
diffraction is given in § 3. In § 4 new data concerning 
the phenomenon of focusing are presented. In § 5 a 
detailed analysis of possible types of Pendell6sung 
effect is given. 

2. Anomalous Pendell6sung effect. Experiment 

Waves with different refractive indices are excited when 
X-rays diffract in a perfect crystal. The interference of 
these waves leads to the crystal beating first predicted 
by Ewald (1917) and called the 'Pendellfsung' 

(a) (b) (c) 
Fig. 1. Pendelldsung fringes in a perfect crystal. (a) Incident plane 

X-ray wave. (b) Incident spherical wave; interference pattern of 
Kato's type. (c) Incident spherical wave; interference pattern 
obtained in the present paper. 
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phenomenon. The interference pattern depends on the 
form of the incident wave. Thus, if the incident wave is 
plane, the image of a wedge-shaped crystal represents a 
series of  equidistant interference fringes (Fig. la). In 
the case of an 'incident spherical wave', as shown 
theoretically in the papers by Kato (1961, 1968) and 
experimentally by Kato & Lang (1959), and also by 
Hart & Milne (1968), the interference fringes have the 

form of  hyperbolae, the vertices of  which are directed 
towards the thin part of  the crystal (Fig. lb). For small 
source-film distances section topographs, similar to 
those depicted in Fig. l(b), are observed in the 
conventional Lang photography geometry. 

However, if one takes into account diffraction 
phenomena in vacuum, i.e. the change of phase 
relationships for a spherical wave propagating from the 
source to the film, it is evident from physical con- 
siderations that the topographs presented in Figs. 1 (a) 
and 1 (b) are the extreme cases, and there must exist a 
continuous transition from one case to the other. The 
theoretical analysis performed in the present paper (see 
§§ 4 and 5) shows that such a transition is indeed 
realized when the ratio t/L changes, where t is the 
crystal thickness and L is the total source-crystal-film 
distance. In the case of a wedge-shaped specimen it is 
convenient to consider a value t s proportional to L (see 
formula 3.15). Then on the topograph of a wedge- 
shaped crystal one may single outfive different sections 
(Fig. 1 (c), depending on the relation between t and ts, 
with different physical structure of  interference fringes, 
namely: 

(I) the region in which the approximation of an 
incident plane wave is valid (t ,~ ts); 

(II) the interference region that precedes the focusing 
(t < t~); 

(III) the region of focusing (interference fringes are 
absent) (t ~_ ts); 

(IV) the interference region that follows the focusing 
(t > ts); 

(V) the region of Kato's theory applicability (no 
dependence on L) (t >> ts). 

We observed interference effects in these regions 
experimentally, the scheme being presented in Fig. 2. 
The Rigaku Denki instrument Microflex with a focus 
dimension no more than 10 pm was used as a generator 
of radiation. The characteristic radiation of Cu Ka, Au 
La  and Ag Ka lines with wavelengths 1.54, 1.27 and 
0.559/~, respectively, were used. 

c 

s "1 fil~ 

Fig. 2. The scheme of the experiment. 

A slit of width 0.5-3 mm was used for singling out a 
spectral line. 

The investigated Ge and Si specimens had the form 
of a wedge, which permitted us to observe diffraction 
images forming at different depths of the crystal on the 
same topograph. The images were developed on 
MR-type photoplates. To provide a chromatic focusing 
of the images arising from different sections of the 
spectral line, a symmetric scheme is used with the 
source-crystal distance equal to the crystal-film one 
(L 1 -- L2). The topographs of symmetric Laue 
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Fig. 3. The topograph of a Si single crystal for large source-film 
distance (L = 2.3 m); reflexion 220, radiation Au La (2 = 
1.276 A). 
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Table 1. Values o f  experimental parameters luo, 2, t s and A 

Interference effects observed in 
different sections of  topographs  

#o L A t s I I I  I I I  IV 
No.  Crys ta l  h k I 2 (A) ( m m  -1) (m) (larn) (~aa) t ,~ t, t < t s t ~ t s t > ts 

1 Ge  1 1 1 1-540 35.4  2 .0  8.4 330.1 + + _ 
2 Ge  3 3 3 1.540 35 .4  2.0 10.6 29.1 --  + + _ 
3 G e  1 1 1 1.276 21 .0  2.3 10.2 380.6  + + + _ 
4 G e  3 3 3 1.276 21 .0  2.3 14.7 29 .0  --  + ÷ + 
5 Ge  2 2 0 1.276 21 .0  2-3 8.2 176.0 + + + _ 
6 Si 1 1 1 1.276 8-1 1.4 23.3 92.6 + + + + 
7 Si 3 3 3 1.276 8.1 2.3 33.8 11.6 - - + + 
8 Si 2 2 0 1.276 8.1 2.3 19-2 69 .2  - + + + 
9 Si 3 1 1 1.276 8-1 2-3 29.1 33 .2  - - + + 

10 Si 1 1 1 0-559 0 .73 1.4 53-6 91.3 - + + + 
11 Si 3 3 3 0 .559  0 .73 1.4 96.7  5-7 --  - + + 

reflexions 111,333,220, 311, at distances L = 1.4, 2.0, 
2.3 m (L = L~ + L2) were taken. A diffraction pattern 
with good linear resolution may be obtained only under 
conditions of high stability. For this purpose the X-ray 
generator was operated in the idle regime for 1.5-2 h 
before the exposure. All possible measures for 
providing mechanical stability of the set-up were also 
taken. The time of exposure amounted to 5-20 h. 

The general appearance of the image, whose separate 
sections were observed in different topographs, is 
shown schematically in Fig. l(c). In this figure the 
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Fig. 4. Exper imental  pat terns  o f  anomalous  P e n d e l l 6 s u n g  fringes. 
F ragmen t s  of  the topographs  of  a wedge-shaped Ge  single crystal  
at wedge thickness smaller  than the thickness of  focusing (t  ~ ts); 

L = 2.3 m;  2 = 1.276/~,. (a) Reflexion 220; (b)reflexion 111. 

regions of the wedge corresponding to the above- 
mentioned types of interference are also indicated. 
Character and contrast of interference pattern depend 
on the relationships between the values of such 
parameters as the coefficient of X-ray absorption #0, 
the wavelength of radiation 2, the extinction length A, 
and the thickness of focusing t s. 

However, the relationship between these parameters, 
enabling all the regions I -V to be clearly seen on the 
same topograph, cannot be realized experimentally. 
Thus, if #0 ts > 2, the Borrmann effect occurs in regions 
IV and V and Pendell6sung fringes are not observed. 
On the other hand, for t JA  ~_ 1 there are no 
Pendell6sung fringes in regions I and II. Therefore, the 
experimental parameters ~t0, 2, t s and A were chosen so 
that different types of interference would be revealed. 

In Table 1 the values of these parameters are given 
for the cases that have been realized experimentally. 
The regions that were observed in the topograph are 
also indicated in the table. In Figs. 3-5 the most typical 
sections of the topographic images obtained are shown. 
The topograph of a wedge-shaped Si single crystal that 
corresponds to reflexion 220 for Au La radiation and L 
= 2.3 m is shown in Fig. 3. In the topograph one can 
see the region of  focusing as well as the region of  the 
anomalous Pendell6sung effect (region II) near the top 
of the wedge, where the fringes are bent towards the 
thick part of the crystal. 

The anomalous structure of  interference fringes has 
been observed in a more distinct form for the case of 
reflexion from the planes (111)and (220) (Au La 
radiation, L -- 2.3 m) of Ge single crystals. 
Corresponding topographs are shown in Fig. 4. Near 
the edge of the wedge (region I) up to 8-10 inter- 
ference fringes are observed in the direction of the 
diffraction vector for crystal thickness t < 2A. As the 
crystal thickness increases, the image becomes 
narrower rapidly and for t ~ (4-5) A the number of 
interference fringes diminishes down to one or two 
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(region II). A specific feature of the topographs is the 
absence of a sharp boundary of the image in regions I 
and II. 

The interference pattern in a Si single crystal, shown 
in Fig. 5, for 111 reflexion and L = 1.4 m (Ag Ka 
radiation) is displayed in quite another form. Here in 
the range of thicknesses t > t s (region IV) a series of  
alternating light spots (lagoons) is seen whose form 
tends to the form of  fringes of  the classical 
Pendell6sung effect,* as the thickness increases. Let us 
note that in this region the diffraction pattern already 
has a sharp boundary (for details see § 5). 

Thus, a great variety of interference patterns is 
observed depending on the conditions of the experi- 
ment, each having its specific structure, which naturally 
provides an opportunity for utilizing interference 
phenomena in the investigation of crystal structure. In 
the case of the anomalous Pendell6sung effect the 
observed interference pattern contains a great number 
of fringes, indicating the high resolving power of the 
method. A thorough theoretical analysis of these 
problems will be given in § 5. 

3. General theory of a spherical-wave diffraction 

Let there be a source at point S whose linear 
dimensions are considered infinitesimal. The scalar field 
arising from such a source is expressed by the function 

~,(r) = [exp(ixr)]/r, (3.1) 

where r is the distance from the source, and x = 27r/2. 
In such a field the waves with all wave vectors k, 

whose magnitude is equal to x, are uniformly dis- 
tributed. This field may be represented as a two- 
dimensional Fourier integral with respect to the vectors 
q which are perpendicular to an arbitrarily chosen 
vector So (in the region S0r > 0): 

f dq exp[iqr + iS 0 r ( K  2 - -  q2)1/2] 
~,(r) = 2zd (2~z) 2 (x2 _ q2)1/2 (3.2) 

It is convenient to choose the unit vector corresponding 
to the exact Bragg direction as S 0. 

The components of field for which the Bragg 
condition holds rather accurately take part effectively 
in the diffraction process. Therefore, in (3.2) only the 
components with the wave vectors 

q < I,~hl#c (3.3) 
are of importance. 

The Fourier component of the crystal polarizability 
is known to be rather small, of the order of 10-5-10 -6 . 
For this reason it seems quite reasonable to neglect in 
(3.2) the terms of the order of q2/x2 and substitute 
(X2 __ q2)1/2 by x. 

* Obtained in Lang's conventional scheme of topography. 

In fact, an approximation of this type was used by 
Kato (1961, 1968) for the construction of his spherical- 
wave diffraction theory. In this approximation the 
distance from the source to the crystal does not enter 
the expression for the intensity at all. Thus, the problem 
was reduced to the determination of wave fields in a 
crystal in the limiting case, when the source-crystal 
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Fig. 5. Wave-field interference at wedge thickness t > t s. A 

fragment of a Si single-crystal topograph; reflexion 111, L = 1.4 
m, Ag Ka (2 = 0.559 ,/t). 
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distance did not affect the diffraction-pattern character. 
In practice, neglecting the terms q2/K2 in the 

integrand of (3.2) is not always correct. Generally 
speaking, terms of the order of q2/x2  in the exponent 
argument should be kept, i.e. their smallness may be 
compensated to a great degree by a large value of S O r 
= L~, where L~ is the distance from the source to the 
crystal. Therefore, we shall use the following rep- 
resentation for the electric vector of radiation incident 
on the crystal" 

2rei f dq 
E ""1 (r) = - -  - -  exp [ik 0(q)rl ~ A s eos, (3.4) 

x (2n) 2 s 

where (q2) 
ko(q)= x - - ~  S o + q ,  s=z~,a .  (3.5) 

The polarization vectors eos in general also depend on 
q, but this dependence may be neglected in the region 
(3.3). We choose the vector e0s in the form 

O' 

%° - Ioi 
- - - ,  o = [ S 0 × h l ,  % , , = l e o .  , × s o ] ,  (3.6)  

where h is the reciprocal-lattice vector multiplied by 2zr. 
In (3.4) we take into account some change of the 

wave-vector projection in the direction S O for the waves 
incident on the crystal in the off-Bragg direction. 
Despite the fact that this change has rather a small 
value, A k  = q V 2 x ,  it may result in a noticeable wave 
phase change at the entrance surface of the crystal. 
This may eventually lead to an essential rearrangement 
of the diffraction pattern as a whole. The field 
distribution near a crystal surface corresponding to 
approximation (3.4) is determined by an expression of 
the form 

1 [ 
E'in'(r) ----- ~ exp i r o r  + ~ p2 Xs As eos, (3.7) 

mined from the condition k~, = k02 = (2zr/2) 2. Below, we 
confine ourselves to the case of the vectors k 0 and k h 
making equal angles with the surface of the crystal. In 
this case the parameter a is determined, with an 
accuracy of up to'q2/x 2, by the expression 

2hq q2(1 - cos  20n) 
(~:(I  1 + (I2,  (11 = - - ,  a2 = , (3.9) 

xT0 xY0 

where )'0 = S0 no, 0n is the Bragg angle. The amplitude 
of a reflected plane wave is known (see e.g. Pinsker, 
1978): 

2(1 + y2)1/2 e x p l - g ~ j t / 2 1  

x exp [i(esj  + a l ) t / 2 ] ,  (3.10) 

where 
K 

Csj : ~ [Xro --  I XrhlCs(Y - zj(1 + y2)1/2)], 
Yo 

/Usj= b 1 -  z j  C s 
Y0 (1 +y2)1/2 ' 

I Xlhl al YO 
eh-- , Y =  (3 .11)  

I ZI01 2KIX, rhl C s 

{:: 
j = 2  

1 S : t r  
C s = 

cos20  B s=Tr. 

Here, ,~ = Xr + ixt is the complex polarizability of the 
crystal and X0 and Zh are the null and the hth Fourier 
components, t is the thickness of a crystal plate. 

As a result, the amplitude of the electric field of a 
diffracted spherical wave behind the crystal takes the 
form 

where ro = XSo, P = r - SoL ~ is the vector in the plane 
perpendicular to S o. Formula (3.7) is a standard 
representation of a spherical wave at a great distance 
from the source. 

Given the expansion of the incident wave with 
respect to plane waves, the wave field in the crystal and 
behind it is found in accordance with a standard 
procedure. The plane wave with the wave vector k o and 
a unit amplitude diffracting in the crystal is reflected 
and transformed into the plane wave with the wave 
vector 

k h = k o + h - a n o / 2 ,  (3.8) 

where n o is the unit vector of the normal to the entrance 
surface of the crystal, and the parameter a is deter- 

E~t°ut}(r) = ~ A s eh~ - -  
$ 

2m f dq 
R s ( q ,  t)  

× exp[iko(q)ro + ikh(q)(r--ro)], (3.12) 

where ehs are the polarization vectors in the plane 
perpendicular to S h = So + h/K. They are determined 
by formulae (3.6), in which S o should be substituted by 
S h. Vector r o is the distance from the source to the 
entrance surface of the crystal. It is easy to see that the 
integral (3.12) will be of a noticeable value only in the 
case of the vector r 0 parallel to S o and the vector (r - 
r0) directed closely to Sh. We put a screen (film) 
perpendicular to S h and let p be a vector in the plane of 
the screen. Of greatest interest is an experiment in 
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which a crystal is halfway between the source and the 
detector. In this case 

r 0 = S  0L/2 r = r  0 + n  o t + S  h L / 2 + p .  

For the sake of simplicity let us assume that the 
vector n o lies in the scattering plane, i.e. in the plane of 
the vectors S O and S h. Then the integration in the 
direction normal to this plane leads again to an 
expression of type (3.7) as a factor, while it is 
convenient to express the remaining integral in terms of 
y. As a result, we obtain the expression for the intensity 
in the reflected beam: 

1 
lh(x)  = - ~  Z Gsl~ i dyF~j(y)expli~)sj(X,Y)]l 2, (3.13) 

J 
s 

where 

F~j(y) = 2(1 + y2)1/2 exp - , G, = 2 sin 220 B 

7rt[ y2)1/2 1 ] 
(ps j (x ,y)=--~ py + zj(1 + - - ~ q s y  2 • (3.14) 

Here x is the projection of p in the direction of Phi. The 
intensity is independent of the coordinate in the 
perpendicular direction. 

p = x /t  sin O n , qs = ts/t, 

2L 2 cos O n 
t s -  , A s - - - -  

2A s sin 2 0 B I XrhIC s 
(3.15) 

In (3.13) the incident radiation is supposed to be 
unpolarized and the crystal to consist of atoms of the 
same kind. 

Formulae (3.13)-(3.15) are the basis for the cal- 
culation of a diffraction pattern. A concrete analysis of 
these formulae will be given in the following sections. 
Here we only mention that the variety of interference 
patterns considered in the previous section is due to the 
appearance of a new phase term in the integrand. This 
term is proportional to q~ = ts/t. If one sets qs = 0 
(3.13) will exactly correspond to the result obtained by 
Kato (1961, 1968). The new parameter t s determines 
the thickness of the crystal, focusing a wave field at a 
distance L from the source. 

4. Diffraction focusing of  a spherical wave 

If the crystal thickness t (or the focusing thickness t~) is 
much greater than the extinction length A, the 
integrand phase in (3.13), as seen from (3.14), will 
change very rapidly with y. Therefore, the value of the 
integral will be much smaller than IFIAy due to strong 
oscillations of the integrand, where Ay is the 
characteristic interval in which the integrand modulus 
noticeably differs from zero. It is most convenient to 

perform an analysis of the problem in this case by the 
method of stationary phase (Jeffreys & Swirles, 1966). 
According to this method the region near the point Y0 at 
which c3q)/cSy = 0 makes the main contribution to the 
integral. The contribution is determined by the value of 
the integrand at this point and by the value of the 
second derivative of the phase ~2~0/c~y2. 

As a result, one may obtain for Ih(x)  the approxi- 
mate expression 

1 

S 

F~j(Yo) 

1 -- y02) 3/2 qs(1 + 

2 

x exp [iq),j(Y0)] (4.1) 

Only one stationary point, Y0, ~s supposed to exist on 
each sheet of the dispersion surface. We remark that 
the value Y0 depends on x, t, L, as well as on the indices 
s and j. By differentiation of (3.14) it is easy to obtain 
the equations for determining Y0, namely: 

Y0 
p + zj (1 + y02) 1/2 - qsYo = 0. (4.2) 

In particular, it follows from this equation that any 
value ofy  can be stationary. Moreover, if one chooses a 
certain value of y, (4.2) will immediately determine the 
coordinate x = pt sin 0 s at which this value will be 
stationary for the given q. We proceed to take (4.1) into 
account. It is easy to see that for every value of Y0 for 
zj = 1 (slightly absorbed mode) the square root in the 
denominator vanishes if 

1 
q' (1 + y~)3/2" (4.3) 

In this case, (4.1) diverges. Physical interpretation of 
this divergence is based on the effect of focusing of an 
X-ray spherical wave. Integral (3.13) for these values 
of the parameters has a sharp maximum. The deter- 
mination of its value and structure requires additional 
information concerning the behaviour of the phase and 
the modulus of the integrand in the focusing region of 
angles y _~ Y0. 

According to (4.3), the stationary points cor- 
responding to the focus for given t are 

Yo = ¥ [(tits) 2/3 -- 1 ]1/2 (4.4) 

Thus, for t < t s there is no focusing, for t = t~ the 
central region of angles near Y0 = 0 is focused, and for 
t > t~ two symmetric off-Bragg regions of angles are 
focused. It is evident that the strongest maximum 
should be expected for t slightly exceeding t~, when the 
focusing regions of angles, corresponding to the points 
+Y0, are still overlapped. Nevertheless, the parameter t s 
determines a scale of thickness for which the central 



1008 P E N D E L L ( ) S U N G  FR IN G ES FOR X-RAY S P H E R I C A L - W A V E  D I F F R A C T I O N  

region of angles corresponding to the main maximum is 
focused. 

Substit.uting (4.4) in (4.2), it is easy to obtain a locus 
of foci on the plane x,t  

x+ = +t[1 - (ts/t)2/3] 3/2 sin 0 n. (4.5) 

In the limit t >> t~ the lines x = x+(t) correspond to the 
edges of the Borrmann fan. However, for all finite t 
they are inside it. 

In the case of a slightly absorbing crystal, focusing 
on the lines x = x+ (t) in the region t > t s leads to the 
formation of a sharp boundary near the diffraction 
fringe since in the region x > x+(t) the intensity is 
extremely low (see the  next section). This result is in 
good agreement with the experimental pattern 
presented in Fig. 5. For t = 550 ~tm, the width of the 
experimental fringe, Aexo, is 76 W'n. The theoretical 
estimate following the formula Ath = x+ -- x gives the 
value 57 lam (t s = 91.3 IJm, sin 0 n = 0.0893), whereas 
the Borrmann fan is 98 ~rn in this case. 

In a strongly absorbing crystal, go t >> I, the 
Borrmann effect occurs and only the weakly absorbed 
field is of importance. Therefore, the effective region of 
integration in (3.13) is small. In this case one may 
obtain an approximate value of the integral expanding 
the dependence of gsj and ~Osj on y in a power series and 
neglecting all the terms of higher order than y4. As a 
result, by performing simple calculations we obtain 
(Afanas'ev & Kohn, 1977): 

I~(x) ~_ Z - - e x p  [-g.~ tl exp , (4.6) 
s Xos 

where 

1 go  
B s = - ~ V / - ~ Y s t s s i n O  n, g,,s = (1- -Cseh) ,  

COS 0 a 

A (%--  1) 1+ Q2]1/2 2A s 1 

J x ° ' = - 2  qs Q2 , Q -  rct s r 2 

(4.7) 

4 cos O n )1/2, 

Y~ = go ts Cs en 
(4.8) 

2A s sin O n 
A - (4.9) 

~rs 

The parameter Ys is the effective halfwidth of the 
integration range in (3.13) for t = t s. According to (4.6) 
the distribution of intensity in the reflected fringe has a 
Gaussian form for all thicknesses. The narrowest and 
highest peak arises for t = t s. The width of the fringe (at 
height 0.6/max) is equal to A in this case, and does not 
depend on the polarization of the incident radiation. 

If the condition gots >> 1 does not hold, (4.6) is 
wrong, and (4.9) gives an underestimated value, since 

in the limit of go --' 0, A = 0 according to (4.9). 
However, an approximate value for the width of focus 
may also be obtained in this limiting case. For this one 
should determine an effective interval of y values in 
integral (3.13), in which the phase remains almost 
constant for t = t s and x = 0. Outside this interval the 
integrand strongly oscillates and the contribution of 
these regions to the integral may be neglected. While 
keeping a term proportional to y4 in phase ~0 (3.14), we 
obtain 

l ( 8 A s ]  TM 

Ys = (4.10) 

Thus, for a slightly absorbing crystal the focus width 
is determined by (4.9), in which Ys should be chosen 
according to (4.10). In this case the parameter A 
depends on the X-ray polarization. In the general case 
it is necessary to choose the minimum value among the 
two values (4.8) and (4.10). If these values are close, a 
slightly smaller value for Ys should be chosen. 

The experimental curve I ( x )  obtained by the 
photometry of a reflected fringe in the field of focusing 
(t ~ t~) is shown in Fig. 6(a) for the case Ge, Au La, 
220. For comparison the results of the exact cal- 
culation of integral (3.13) for this case are presented in 
Fig. 6(b). The method of calculation is described by 
Kohn (1979). As seen from the figure, the experi- 
mental width of the focus (~18 lam) considerably 
exceeds the theoretical one (3.5 ~.rn). The reasons for 
such disagreement are firstly the finite dimensions of 
the X-ray tube focus and secondly insufficient 
mechanical stability of the experimental set-up. 
Moreover, the orientation of the entrance surface of the 
specimen was not completely symmetric. Although the 
deviation from the symmetric position is only 1-2 ° , it 
may lead to a considerable broadening of the reflected 
fringe due to incomplete chromatic focusing. The 
estimation of the focus width using (4.9) and (4.10) 
gives for A the value 3.4 lam, which is in good 
agreement with the exact calculation. 

" J -  . . . .  T ~ .  

L~T - 

(a) (b) 

Fig. 6. Ge single-crystal topograph profiles in the region of focusing 
(t ~ tO; reflexion 220, L = 2.3 m, 2 = 1.276/~,. (a) Photometric 
curve; (b) calculated profile in the approximation of a point 
s o u r c e .  
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5. The anomalous Pendelli~sung effect. Theory 

Now we proceed to a systematic analysis of the 
different types of interference patterns arising as the 
ratio t / t  s changes. First of all, we consider region I (see 
§ 2), when the crystal thickness t is much smaller than 
t s. It is necessary for Pendel l6sung fringe observation in 
this field that t should be greater than A. Therefore, the 
condition t s >> A should also be satisfied or, taking into 
account (3.15), 

2L >> 2(A sin On) 2. (5.1) 

In this case an approximate expression for the 
intensity may be obtained from (4.1) by considering the 
smallness of the parameter 1/q. We therefore sub- 
stitute the square root in the denominator of (4.1) by 
unity and neglect the second term on the left-hand side 
of (4.2) when calculating the point of stationary phase. 
As a result we obtain 

1 I L In(X) ~---~-~ ~ ~ Fsj(yo)exp[i~psjO, o)] , (5.2) 
J 

p x sin 20 B x 
Yo - - , x s = t s sin O B. (5.3) 

qs Xs I xrhl C s L 

Formulae (5.2), (5.3) exactly correspond to the 
results of the dynamical theory of diffraction in the 
approximation of an incident plane wave, the ratio x / L  
playing the role of the angular variable. Thus, the 
intensity at the point x is approximately determined by 
a plane-wave component in the expansion of a spherical 
wave corresponding to the angular deflection from the 
Bragg direction, from which this point is seen at a 
distance L from the imaginary source. One may say 
that in this case the reflecting planes of the crystal are 
similar to a mirror with an extremely high sensitivity to 
the incidence angle, i.e. only the rays close to the Bragg 
direction are reflected. 

Taking into account (3.11) and (3.14), we may 
rewrite (5.2) in the form 

l [ ~°~ ] 
lh(x) = 2L-5 exp - - - ~ o  

--s-  ~i~(x) l ( ~t ~Ts t)12, 
× ~-" sin i (5.4) 

/-"s As A , ( x )  270 

where 

~s : Uo Cs eh As(X)/As, (5.5) 

~s(X  ) As = (5.6) 
I 1 + (X/Xs)2] 1,2" 

AS immediately seen from (5.4), in the case of a 
slightly absorbing crystal, /~0 t ,~ 1, the intensity 
oscillates with the increase in t, but the period of 
oscillation depends on x. For x : 0 the period has a 

maximum and diminishes as I xl increases. Con- 
sequently, the dark and light fringes (PendellSsung 
fringes) will have a narrower spacing at the edges of the 
diffraction region and a wider spacing in the centre, i.e. 
on the line x = 0. Therefore, the central part of the 
fringe turns out to be bent towards the thick part of the 
wedge. 

The degree of bending of the fringes depends on L. 
In the limit L --, 0o the fringes are straight, which 
corresponds to the plane-wave incidence at the Bragg 
angle (see Fig. la). In practice, the fringes are always 
bent due to L finiteness, and the first fringe broadens 
out in the centre. The length of a linear section is of the 
order of x s (As~t) 1/2. 

With the increase in crystal thickness, approxi- 
mation (5.4) proves insufficient as a description of the 
anomalous Pendel ldsung effect. In this region (region 
II) it is necessary to use more general formulae (4.1), 
(4.2). Then, even in a slightly absorbing crystal, the 
relationship between the amplitudes of interfering 
waves changes, which leads to weakening in the 
contrast of the interference pattern. Besides, the phase 
relationships change because the stationary phase 
points for the two waves become different (see Fig. 8a). 

In order to comprehend specific properties of the 
arising changes, we consider the central part of the 
interference pattern corresponding to small values of x. 
In this case the roots of (4.2) are approximately 

P 
y0j = (5.7) 

(qs - -Z j )  

Substituting these values in (3.14), we calculate the 
phase difference of two interfering waves in the form of 
a power series in x; keeping only the first two terms, we 
obtain 

2z~t[ I x 2 ] 
A ~ p = ~  1 + - -  + . . . .  (5.8) 

2 (t 2 - / 2 )  sin 20s 

When t ~ t s, the phase difference changes with the 
increase in x according to (5.6). However, with the 
increase in t the change of the phase difference becomes 
more rapid, and the length of a linear section shortens 
and vanishes when t tends to t s. Thus, the interference 
fringes are more strongly bent towards the focus 
region. 

Such a character of the interference pattern is clearly 
seen in the experimental topograph of the acute part of 
the Ge wedge in the case of 111 reflexion (see Fig. 4b). 
Here the condition t s >> A (see Table l) is satisfied and, 
besides, the polarization factor, cos 20 s is close to 
unity. In the topograph, V shaping of the fringes with 
the increase in t and worsening of the contrast are seen. 
The latter is connected with a relatively high absorption 
coefficient, and consequently with the Borrmann effect 
for one of waves, but not with focusing, since the 
intensity averaged over the period of oscillations 
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decreases with the increase of t. In the case of the 220 
reflexion, presented in Fig. 4(a), of interest is a 
break-down of oscillations because of the difference of 
A s for the waves with two polarizations. Here it is also 
clearly seen that the fringes become more acute in the 
thicker part of the wedge. 

In Fig. 7, the theoretical topographs for the two 
cases, calculated by means of a computer using (4.1) 
and (4.2), are presented. The calculated topographs are 
visually broader than the experimental ones due to a 
different choice of scales along the axes x and t or, in 
other words, they correspond to a more obtuse wedge. 
For the rest, it is easy to notice a complete agreement 
between the experimental results and the theory. 

Now we consider the range of thicknesses t > t s. In 
this region the parameter q < 1. We suppose at first 
that q ,~ 1 (the Kato case). In this case one may neglect 
the last term on the left-hand side of (4.2), when 
calculating the point of stationary phase. The solution 
(4.2) takes the form: 

P x 
YoY= zY ( l  _p2 ) l / 2  -- zJ (X 2 - -X2)  v 2 ,  X m =  tSin  On. 

m 

(5.9) 

It follows from (5.9) that the points of stationary 
phase exist only in the region I pl < 1 or I xl < Xm, 
which is usually called the 'Borrmann fan'. According 
to the Kato theory, reflexion of X-rays in a crystal 
occurs only in this region, which completely deter- 
mines the width of the reflected beam. As known from 
the generalized dynamical theory (Pinsker, 1978), such 
a result is obtained strictly only in the case of the 
&function character of field distribution on the 
entrance surface of a crystal. From this viewpoint the 
Kato theory describes the situation when the source of 
the spherical wave is located just in front of the crystal. 
In fact, the result (5.9), being approximate, proves to 
hold also in the case of the source at some distance 
from the crystal, provided that t >> t r 

0 
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Fig. 7. Theoretical patterns of the anomalous Pendell6sung effect 
as calculated using (4.1) for the values of parameters 
corresponding to the experimental pattern in Fig. 4. 
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When calculating the intensity in this extreme case, 
we may neglect unity compared with the second term 
of the square root in the denominator. Taking into 
account (5.9), we have 

1 
l n ( x ) = - ~ e x p  -- Y0 J 

tsA2(x) I ( m  
x Z tA 2 sin ~s(x  ) 

$ 

where now 

(5.10) 

+ - - - i  
4 2yoJl' 

,4s(X) = As (5.11) 
[ 1 -- (X/Xm)2] 1/2 

and/~s is defined by (5.5) as before. The formula (5.10) 
differs from (5.4) mainly by the dependence of an 
effective extinction length on x. According to (5.10), 
the value of As(x ) increases with increase in x, but this 
means that the fringes are bent towards the thick part 
of the crystal. Such an interference pattern is usually 
observed in section topographs. Therefore, the 
Pendell6sung effect of such a type, as distinct from 
(5.4), may be regarded as a classical one. 

A remark should be made in connection with (5.10). 
In the case q = 0, integral (3.13) is known to be 
calculated exactly and expressed in terms of the Bessel 
function (e.g. Afanas'ev & Kohn, 1977; Kato, 1961, 
1968). One may be directly convinced that (5.10) is 
obtained from the exact formula if one uses the 
asymptotic expansion for the Bessel function at large 
values of argument m/.4s(x ). Near the edges of the 
'Borrmann fan' x m -- I xl .~ Xm, where the argument is 
small, (5.10) is not valid. It should be noted that the 
exact formula is also not valid in this region, since Y0 
becomes large and the term qYo in the left-hand side of 
(4.2) may not be neglected. On the other hand, 
invalidity of (5.10) is also connected with its divergence 
for the case of a non-absorbing crystal, which indicates 
the existence of a specific wave-field focusing (see § 4). 

This problem will be discussed later, but now we 
consider an additional term zd4 in the sine argument (in 
5.10). At the point x = 0 the periods of oscillations in 
crystal thickness are the same and equal to A s in the 
regions t ,~ t s and t >> t s. However, the positions of 
maxima and minima in the region t >> t s are shifted with 
respect to the region t ~ t s by a quarter of the period. 
This is connected with the phase change of a slightly 
absorbing mode ( j  = 1), when it crosses over the focus, 
where the second derivative equals zero. This effect 
is well known in optics of visible light (Born & Wolf, 
1964). 

Now we consider region IV when t > ts, but the 
parameter q = ts/t may not be neglected. In this region 
(4.2) should be solved exactly. Since this equation is 
equivalent to the fourth-power equation with respect to 
Y0 its analytic solution is rather cumbersome. The 
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position of the points of stationary phase may be 
clarified if we solve (4.2) graphically. For this purpose 
we plot the functions 

~j(v) = sin 0 B t s -  t (1 + y2)1/2 y'  J = I, 2, (5.12) 

and draw a line parallel to the abscissa at a distance x 
from it (see Fig. 8). The points of stationary phase Y0 
are intersections of the straight line with the curves. 

The physical sense of the points of stationary phase 
is that they determine the excitement points on the 
dispersion curve, in the vicinity of which the wave 
makes a maximum contribution to the point x of 
the diffraction pattern. Corresponding plane-wave 
components in the expansion of a spherical wave 
interfere with one another, the character of inter- 
ference depending essentially on the phase difference 
between them. Therefore, these plane waves may be 
called interference waves, and the corresponding points 
of excitation on the dispersion surface interference 
points of excitation or simply interference points. 

When qs > 1 both the functions increase mono- 
tonically, therefore, for all x the interference points on 
both sheets of the dispersion surface are on the same 
side relative to the centre (see Fig. 8a). In the case of qs 
= 1 the function ~,,(y) has an inflection point at y = 0 
(see Fig. 8b), i.e. at this point the function itself and its 
first and second derivatives with respect to y are equal 
to zero. Therefore, at the point x = 0 we have good 
focusing in this case. 

The situation for qs < 1 is represented in Fig. 8(c). 
As seen from the figure, the function ~q(y) has two 
extremal points" a maximum and a minimum, with their 
coordinates defined by (4.4) and the corresponding 
values by (4.5). 

In the region x_ < x < x+ on the dispersion surface, 
corresponding to slightly absorbed field, there are three 
interference points at once; therefore, the interference 
of waves excited from one sheet of the dispersion 
surface is possible along with an ordinary interference. 

Of greatest interest are the interference points 
corresponding to small values of ly01 since the 
amplitude of the interfering wave is small when the 
opposite is the case. It is necessary to take into account 
the slope of the curve ~j at the point of intersection 
which determines the spherical-wave angular- 
component distribution density along the axis x (see 
Fig. 8b). Indeed, if Ax is a small interval on the axis x, 
and Ay is a small interval of normalized angles 
corresponding to Ax, then 

Ay 1 

Ax Iou/~/Oyi 
(5.]3) 

In the method of stationary phase the value of (5.13) 
enters the intensity expression as a factor. 

So, in this case, one may qualitatively analyse the 

character of the interference pattern using Fig. 8(c). 
First of all, it should be mentioned that the slightly 
absorbed field makes the principal contribution to the 
total intensity, since for this field the value of (5.13) 

= 25/.,., 60 y" 

• fO 

C/'. 
4 0  

S~, A qK,,, (a~) ~, I (d) ~- s "b ;  ~..SS~ 7 ~ ,  f i t .  

I ~o 

Fig. 8. Curves for graphical determination of interference points on 
the dispersion surface (stationary phase points). The values of 
parameters correspond to different types of wave-field inter- 
ference observed in experiment: (a) the prefocusing anomalous 
Pendell6sung effect (t < t,); (b) focusing (t = ts); (c) interference 
for t > ts; (d) Kato's case (t >> t,). 
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exceeds that for a strongly absorbed field. Besides, this 
factor increases with increase of Ix I. At the points ix I 
= I x+l the radiation is focused, although to a lesser 

. - -  

extent than in the case t = t s. In the region ixl > Ix+l 
the intensity of the reflected beam is much lower than in 
the region I xl < Ix+l, since it is formed only by two 

- -  

weak waves unlike the case of the central region, where 
four waves interfere simultaneously. 

The period of oscillations along the axis x is mainly 
determined by the change of phase difference of 
interfering waves with the increase of x. According to 
Fig. 8(c) the interference of waves belonging to the 
same branch of the dispersion surface (the waves 
corresponding to the interference points closest to the 
focus are the most essential) leads to oscillations, with a 
period much less than that for the waves belonging to 
different branches. These peculiar oscillations are 
superimposed on the oscillations corresponding to the 
interference of waves belonging to different branches of 
the dispersion surface and the resultant interference 
pattern proves sufficiently complicated. To observe 
these peculiar oscillations the instrument must have a 
very high resolution. Thus, in the case of Si, Ag K a  and 
t ~_ 5t~, the period of peculiar oscillations is ~_ 2 lam. 

If the dimensions of the X-ray tube focus are greater 
than the period of peculiar oscillations, these 
oscillations are not developed on the film. 

Finally, we need to consider normal oscillations 
which are due to interference of waves belonging to 
different branches of the dispersion surface, that is the 
Pende l l6 sung  effect. In this case, as usual, the intensity 
oscillates with increase of t. However, the period of 
oscillation changes with x. 

We consider now what principal differences from 
Kato's diffraction pattern arise in this region. Firstly, 
the width of the diffraction region is about 2x+ (see 
previous section). With increase in thickness it 
gradually increases, not proportionally to t, but more 
rapidly, until it reaches the dimensions determined by 
the Kato theory. After that the width of the diffraction 
region becomes proportional to t. 

Secondly, the relationship between the amplitudes of 
interfering waves changes, which again leads to 
worsening of the contrast when t is close to t s. 

Thirdly, the geometry of the fringes changes - they 
are more bent towards the focus region. To 
demonstrate this let us consider again the central part of 
the interference pattern, i.e. the region Ixl ,~ x+. In this 
case the interference points are determined by (5.7) and 
the phase difference (from which the constant term 7[/2 
is subtracted) by (5.8). Since in this case t > L, the 
phase difference decreases with increase in x, this 
decrease being the more rapid the closer t is to t s. 

As I xl grows, the tendency of fringes to form V 
shapes towards region IV increases. This is easy to see 
in Fig. 8(c), where the interference points are seen to 
'disperse' more rapidly as x increases. Thereby all the 

interference fringes are within the range I xl < x+(t) .  
We notice that a reverse process takes place in region 
II; when Ixl increases the period of oscillations 
gradually increases (see Fig. 8a). Thus, region IV is 
characterized by relatively low 'visibility' of inter- 
ference fringes, a good resolution occurring only in the 
centre. 

Such a diffraction pattern is shown in Fig. 5, where 
the region 4t s < t < 7t s is presented. In the region 4t s < 
t < 5.5t~ only first maxima in the central part of rather 
a narrow fringe are resolved. With the increase of t light 
spots gradually take the form of fringes, which 
eventually turn into the fringes of the classical 
Pende l l6 sung  effect. 

6. Conclusion 

The results presented in the previous sections clearly 
show that the interference pattern, developed on the 
film due to the diffraction of radiation in a crystal, 
essentially depends not only on the properties of the 
crystal but also on the distance between the source and 
the detector. If the source-crystal-film distance is very 
large or, in other words, t s >> t, the diffraction pattern 
reproduces an angular dependence of the reflexion 
coefficient in the incident plane-wave approximation, 
the diffraction-pattern dimension increasing pro- 
portionally to L in this case. On the other hand, for 
small L (t >> ts), the diffraction pattern takes quite 
another form and, in particular, is independent of L. In 
the intermediate region (t ~_ t~), the effect of X-ray 
spherical-wave focusing occurs, which considerably 
affects the character of the diffraction pattern in the 
region of transition from the anomalous (large L) to the 
ordinary (small L)  Pende l l6 sung  effect. 

The knowledge of possible interference structures in 
X-ray topographs from a perfect crystal is necessary 
for an analysis of the great variety of topographs 
obtained from crystals with imperfections. Therefore, 
the results obtained appear to be of not only pure 
scientific importance but also a practical one. On the 
other hand, new possibilities arise of using diffraction 
for investigation of spectral properties of X-ray 
radiation. Indeed, if in a thick crystal the phenomenon 
of focusing is used along with the Borrmann effect, one 
may obtain highly resolved spectral decomposition of 
incident radiation in a straight beam. 

In conclusion, it should be noted that the analysis 
performed corresponds to the situation when radiation 
falls on the crystal directly from the focus of an X-ray 
tube. 

Therefore, in order to observe Kato's type of 
interference pattern, the distance L should be extremely 
small. However, in practice, the interference pattern is 
observed by another experimental arrangement, when 
the source-crystal distance is not small but a narrow 
slit is placed near the entrance surface of the crystal. 



V. v.  ARISTOV, V. I. P O L O V I N K I N A ,  A. M. A F A N A S ' E V  A N D  V. G. K O H N  1013 

Obviously, the slit itself may be regarded as a source, 
when its dimension a ~_ 2. However, such a condition 
is never satisfied for X-rays. In this connection a 
consistent analysis of the slit role in forming the 
interference pattern, with an account of source-  
crystal-fi lm distance, is of interest. 
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Abstract 

Based on the observations that in the Zhdanov symbols 
of the known CdI 2 and PbI 2 structures the occurrence 
of number 3 is far less frequent than the occurrence of 
numbers 1 and 2 and numbers greater than 3 do not 
occur at all, a review of these structures has been made. 
Empirical rules have been evolved, which help in 
drastically cutting down the number of possible 
structures of a given polytype and thus considerably 
facilitate the process of its crystal-structure deter- 
mination. 

Introduction 

The layered compounds Cdl 2 and PbI 2 are known to be 
rich in polytypism. Over 260 polytypes of the former 
and 50 polytypes of the latter have been reported, of 
which the crystal structures of 90 and 15, respectively, 
have been determined. An examination of the known 
structures, listed in Tables 1 and 2, reveals that their 
Zhdanov symbols rarely contain the number 3. This 
has led to the formulation of a useful empirical 
guideline, using which the number of probable 
structures for a given polytype is drastically reduced. 

0567-7394/80/061013-04501.00 

The nature of  the arrangement of  molecular sandwiches  
in the known structures of  CdI 2 and Pbl  2 

The analysis of the structures of CdI 2 and PbI 2 crystals 
(Tables 1 and 2), grown by various techniques (from 
solution, melt, vapour and gel) and numbering 105 in 
all, shows that they are made up of combinations of 
different types of molecular sandwiches, with each 
sandwich consisting of a sheet of cadmium atoms 
nested between two sheets of iodine atoms. All 
sandwiches are geometrically equivalent but can have 
six possible orientations, with three belonging to a 
cyclic group, viz A yB, BaC and CflA and three to an 
anticyclic group, viz ByA, CaB and AflC. The smallest 
polytype 2H is formed by a periodic repetition of any of 
the above six sandwiches. The second smallest poly- 
type 4 H  (AyB CttB ...) contains sandwiches from 
alternate groups. The higher polytypes consist of 
various combinations of sandwiches from the two 
groups. 

Out of the crystal structures listed in Tables 1 and 2, 
the existence of three structures, viz 6H 2 and 32H~ of 
CdI 2 and 6R of PbI~, is doubtful for the following 
reasons. (a) Although the polytypes 6 H  2 and 6R have 
been reported by Pinsker & co-workers (Pinsker, 1941; 
Pinsker, Tatarinova & Novikova, 1943), and the poly- 
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